using Aitex.Core.Common.DeviceData; using Aitex.Core.RT.DataCenter; using Aitex.Core.RT.Device; using Aitex.Core.RT.Event; using Aitex.Core.RT.IOCore; using Aitex.Core.RT.OperationCenter; using Aitex.Core.RT.SCCore; using Aitex.Core.RT.Tolerance; using Aitex.Core.Util; using MECF.Framework.Common.DBCore; using SorterRT.Modules; using System; using System.Diagnostics; using System.Xml; using Aitex.Core.RT.Log; namespace VirgoRT.Devices.IODevices { public class IoMfc1 : MfcBase1 { public string Unit { get; set; } [Subscription(AITMfcDataPropertyName.Scale)] public override double Scale { get { if (_scN2Scale == null || _scScaleFactor == null) return 0; return _scN2Scale.IntValue * _scScaleFactor.DoubleValue; } } [Subscription(AITMfcDataPropertyName.SetPoint)] public override double SetPoint { get { if (_aoFlow != null) { byte[] high = BitConverter.GetBytes(_aoFlow.Buffer[_aoFlow.Index]); byte[] low = BitConverter.GetBytes(_aoFlow.Buffer[_aoFlow.Index + 1]); float flow = BitConverter.ToSingle(new[] { high[0], high[1], low[0], low[1] }, 0); return flow * Scale / _ANALOG_TRANS_RANGE; } return 0; } set { if (_aoFlow != null) { byte[] flow = BitConverter.GetBytes((float)(value * _ANALOG_TRANS_RANGE / Scale)); _aoFlow.Buffer[_aoFlow.Index] = BitConverter.ToInt16(flow, 0); _aoFlow.Buffer[_aoFlow.Index + 1] = BitConverter.ToInt16(flow, 2); } } } [Subscription(AITMfcDataPropertyName.DefaultSetPoint)] public double DefaultSetPoint { get { if (_scDefaultSetPoint != null) return _scDefaultSetPoint.IntValue; return 0; } } [Subscription(AITMfcDataPropertyName.FeedBack)] public override double FeedBack { get { if (_aiFlow != null) { byte[] high = BitConverter.GetBytes(_aiFlow.Buffer[_aiFlow.Index]); byte[] low = BitConverter.GetBytes(_aiFlow.Buffer[_aiFlow.Index + 1]); float flow = BitConverter.ToSingle(new[] { high[0], high[1], low[0], low[1] }, 0); return (_scRegulationFactor != null && _scRegulationFactor.IntValue > 0) ? flow * Scale / _ANALOG_TRANS_RANGE / _scRegulationFactor.IntValue : flow * Scale / _ANALOG_TRANS_RANGE; } return 0; } } [Subscription(AITMfcDataPropertyName.IsOutOfTolerance)] public override bool IsOutOfTolerance { get { return _alarmChecker.Result; } } [Subscription(AITMfcDataPropertyName.IsEnableAlarm)] public bool EnableAlarm { get { if (_scEnableAlarm != null) return _scEnableAlarm.BoolValue; return false; } } [Subscription(AITMfcDataPropertyName.AlarmRange)] public double AlarmRange { get { if (_scAlarmRange != null) return _scAlarmRange.IntValue; return 0; } } [Subscription(AITMfcDataPropertyName.AlarmTime)] public double AlarmTime { get { if (_scAlarmTime != null) return _scAlarmTime.IntValue; return 0; } } public double WarningRange { get { if (_scWarningRange != null) return _scWarningRange.IntValue; return 0; } } public double WarningTime { get { if (_scWarningTime != null) return _scWarningTime.IntValue; return 0; } } [Subscription(AITMfcDataPropertyName.PressureAlarm)] public bool PressureAlarm { get { return _diPressureAlarm != null ? _diPressureAlarm.Value : true; } } [Subscription(AITMfcDataPropertyName.MfcAlarm)] public bool MfcAlarm { get { return _bMfcAlarm; } } [Subscription(AITMfcDataPropertyName.IsEnable)] public bool Enable { get { if (_scEnable != null) return _scEnable.BoolValue; return false; } } [Subscription(AITMfcDataPropertyName.IsOffline)] public bool IsOffline { get { if (_diOffline != null) return _diOffline.Value; return false; } } public override string DisplayName { get { if (_scGasName != null) return _scGasName.StringValue; return Display; } } private DeviceTimer rampTimer = new DeviceTimer(); private double rampTarget; private double rampInitValue; private int rampTime; private bool _bMfcAlarm = false; private ToleranceChecker _alarmChecker = new ToleranceChecker(); private ToleranceChecker _warningChecker = new ToleranceChecker(); private AIAccessor _aiFlow; private AOAccessor _aoFlow; private AOAccessor _aoRange; private DIAccessor _diOffline; private DIAccessor _diPressureAlarm; private SCConfigItem _scGasName; private SCConfigItem _scEnable; private SCConfigItem _scN2Scale; private SCConfigItem _scScaleFactor; private SCConfigItem _scAlarmRange; private SCConfigItem _scEnableAlarm; private SCConfigItem _scAlarmTime; private SCConfigItem _scDefaultSetPoint; private SCConfigItem _scRegulationFactor; private SCConfigItem _scWarningRange; private SCConfigItem _scWarningTime; public bool Recipetolerance; private R_TRIG _trigOffline = new R_TRIG(); private R_TRIG _trigPressureAlarm = new R_TRIG(); private string _uniqueName; private string GasFlowOutOfTolerance = "GasFlowOutOfTolerance"; private float _recipeAlarmRange; private float _recipeWarningRange; private int _recipeIgnoreTimeMS; private ToleranceChecker _recipeAlarmChecker = new ToleranceChecker(); private ToleranceChecker _recipeWarningChecker = new ToleranceChecker(); private DeviceTimer _recipeIgnoreTimer = new DeviceTimer(); private object _lockerTolerance = new object(); private ushort _ANALOG_TRANS_RANGE = 8000; public IoMfc1(string module, XmlElement node, string ioModule = "") { Unit = node.GetAttribute("unit"); base.Module = module; base.Name = node.GetAttribute("id"); base.Display = node.GetAttribute("display"); base.DeviceID = node.GetAttribute("schematicId"); _aoRange = ParseAoNode("aoRange", node, ioModule); _diOffline = ParseDiNode("diOffline", node, ioModule); _aiFlow = ParseAiNode("aiFlow", node, ioModule); _aoFlow = ParseAoNode("aoFlow", node, ioModule); _diPressureAlarm = ParseDiNode("diPressureAlarm", node, ioModule); _scGasName = SC.GetConfigItem($"{Module}.{Name}.GasName"); _scEnable = SC.GetConfigItem($"{Module}.{Name}.Enable"); _scN2Scale = SC.GetConfigItem($"{Module}.{Name}.MfcN2Scale"); _scScaleFactor = SC.GetConfigItem($"{Module}.{Name}.MfcScaleFactor"); _scAlarmRange = SC.GetConfigItem($"{Module}.{Name}.MfcAlarmRange"); _scEnableAlarm = SC.GetConfigItem($"{Module}.{Name}.MfcEnableAlarm"); _scAlarmTime = SC.GetConfigItem($"{Module}.{Name}.MfcAlarmTime"); _scDefaultSetPoint = SC.GetConfigItem($"{Module}.{Name}.DefaultSetPoint"); _scRegulationFactor = SC.GetConfigItem($"{Module}.{Name}.FlowRegulationFactor"); _scWarningRange = SC.GetConfigItem($"{Module}.{Name}.MfcWarningRange"); _scWarningTime = SC.GetConfigItem($"{Module}.{Name}.MfcWarningTime"); if (SC.ContainsItem("System.ANALOG_TRANS_RANGE")) { _ANALOG_TRANS_RANGE = Convert.ToUInt16(SC.GetValue("System.ANALOG_TRANS_RANGE")); } Recipetolerance = SC.GetValue($"System.Recipetolerance"); _uniqueName = $"{Module}.{Name}"; if (_scGasName != null) Display = _scGasName.StringValue; #if DEBUG Debug.Assert(!string.IsNullOrWhiteSpace(_scGasName.StringValue)); Debug.Assert(null != _scN2Scale); Debug.Assert(null != _aoFlow); Debug.Assert(null != _aiFlow); #endif } public override bool Initialize() { EV.Subscribe(new EventItem("Event", GasFlowOutOfTolerance, "Gas Flow Out Of Tolerance", EventLevel.Alarm, EventType.HostNotification)); DATA.Subscribe($"{Module}.{Name}", () => { AITMfcData data = new AITMfcData { Type = "MFC", UniqueName = _uniqueName, DeviceName = Name, DeviceSchematicId = DeviceID, DisplayName = DisplayName, FeedBack = FeedBack, SetPoint = SetPoint, Scale = Scale, IsOffline = IsOffline, }; return data; }, SubscriptionAttribute.FLAG.IgnoreSaveDB); OP.Subscribe($"{Module}.{Name}.{AITMfcOperation.Ramp}", (name, args) => { double target = (double)args[0]; target = Math.Min(target, Scale); target = Math.Max(target, 0); Ramp(target, 0); EV.PostInfoLog(Module, $"Ramp to {target}{Unit}"); return true; }); DEVICE.Register($"{Module}.{Name}.{AITMfcOperation.Ramp}", (out string reason, int time, object[] param) => { double target = Convert.ToDouble((string)param[0]); target = Math.Min(target, Scale); target = Math.Max(target, 0); Ramp(target, time); reason = $"{Display} ramp to {target}{Unit}"; return true; }); //@AAA use recipe DEVICE.Register($"{Module}.{Name}", (out string reason, int time, object[] param) => { double target = Convert.ToDouble((string)param[0]); target = Math.Min(target, Scale); target = Math.Max(target, 0); Ramp(target, time); reason = $"{Display} ramp to {target}{Unit}"; return true; }); OP.Subscribe($"{Module}.{Name}.SetRecipeTolerance", (out string reason, int time, object[] param) => { reason = string.Empty; lock (_lockerTolerance) { _recipeIgnoreTimer.Stop(); _recipeIgnoreTimeMS = Convert.ToInt32(param[0]) * 1000; _recipeWarningRange = Convert.ToSingle(param[1]); _recipeAlarmRange = Convert.ToSingle(param[2]); _recipeAlarmChecker.RST = true; _recipeWarningChecker.RST = true; _alarmChecker.RST = true; _warningChecker.RST = true; _recipeIgnoreTimer.Start(0); } return true; }); return base.Initialize(); } public override void Monitor() { if (Enable) { Ramping(); CheckTolerance(); if (_aoRange != null) _aoRange.Value = (short)Scale; _trigOffline.CLK = IsOffline; if (_trigOffline.Q) { EV.PostAlarmLog(Module, string.Format("{0} is offline", DisplayName)); _bMfcAlarm = true; } _trigPressureAlarm.CLK = PressureAlarm == false; if (_trigPressureAlarm.Q) EV.PostAlarmLog(Module, $"{Name}, {DisplayName} Pressure Alarm"); if (PressureAlarm) { _trigPressureAlarm.RST = true; } } } public override void Reset() { _bMfcAlarm = false; _trigPressureAlarm.RST = true; _trigOffline.RST = true; _alarmChecker.RST = true; _warningChecker.RST = true; _recipeWarningChecker.RST = true; _recipeAlarmChecker.RST = true; } public override void Terminate() { Ramp(DefaultSetPoint, 0); } public override void Ramp(int time) { Ramp(DefaultSetPoint, time); } public override void Ramp(double target, int time) { _recipeAlarmChecker.RST = true; _recipeWarningChecker.RST = true; _alarmChecker.RST = true; _warningChecker.RST = true; target = Math.Max(0, target); target = Math.Min(Scale, target); rampInitValue = SetPoint; //ramp 初始值取当前设定值,而非实际读取值。零漂问题 rampTime = time; rampTarget = target; rampTimer.Start(rampTime); } public override void StopRamp() { Ramp(SetPoint, 0); } private void Ramping() { if (rampTimer.IsTimeout() || rampTime == 0) { SetPoint = rampTarget; } else { SetPoint = rampInitValue + (rampTarget - rampInitValue) * rampTimer.GetElapseTime() / rampTime; } } private void CheckTolerance() { lock (_lockerTolerance) { if (!Enable) return; if (Math.Abs(SetPoint) < 0.01) return; double alarmRange = _scAlarmRange.IntValue; double alarmTime = _scAlarmTime.IntValue; ToleranceChecker alarmChecker = _alarmChecker; if ((_recipeAlarmRange > 0) && (_recipeAlarmRange / 100.0 * SetPoint < _scAlarmRange.IntValue) && Recipetolerance) { alarmRange = _recipeAlarmRange / 100.0 * SetPoint; alarmChecker = _recipeAlarmChecker; _alarmChecker.RST = true; } else { if (!EnableAlarm || Math.Abs(alarmRange) < 0.01) { alarmChecker = null; } _recipeAlarmChecker.RST = true; } if (_recipeIgnoreTimer.GetElapseTime() > _recipeIgnoreTimeMS && alarmChecker != null) { alarmChecker.Monitor(FeedBack, SetPoint - Math.Abs(alarmRange), SetPoint + Math.Abs(alarmRange), alarmTime); if (alarmChecker.Trig) { LOG.Write($"_recipeIgnoreTimer Elapse time : {_recipeIgnoreTimer.GetElapseTime()}ms , _recipeIgnoreTimeMS :{_recipeIgnoreTimeMS}ms"); EV.PostAlarmLog(Module, $" flow={FeedBack}, setpoint={SetPoint}, out of tolerance({SetPoint - Math.Abs(alarmRange)},{SetPoint + Math.Abs(alarmRange)}) in {alarmTime:0} seconds"); EV.Notify(GasFlowOutOfTolerance); } } double warningRange = _scWarningRange.IntValue; double warningTime = _scWarningTime.IntValue; ToleranceChecker warningChecker = _warningChecker; if ((_recipeWarningRange > 0) && (_recipeWarningRange / 100.0 * SetPoint < _scWarningRange.IntValue) && Recipetolerance) { warningRange = _recipeWarningRange / 100.0 * SetPoint; warningChecker = _recipeWarningChecker; _warningChecker.RST = true; } else { if (!EnableAlarm || Math.Abs(warningRange) < 0.01) { warningChecker = null; } _recipeWarningChecker.RST = true; } if (_recipeIgnoreTimer.GetElapseTime() > _recipeIgnoreTimeMS && warningChecker != null) { warningChecker.Monitor(FeedBack, SetPoint - Math.Abs(warningRange), SetPoint + Math.Abs(warningRange), warningTime); if (warningChecker.Trig) { EV.PostWarningLog(Module, $" flow={FeedBack}, setpoint={SetPoint}, out of tolerance({SetPoint - Math.Abs(warningRange)},{SetPoint + Math.Abs(warningRange)}) in {warningTime:0} seconds"); } } } } } }