using System; using System.Diagnostics; using System.Xml; using Aitex.Core.Common.DeviceData; using Aitex.Core.RT.DataCenter; using Aitex.Core.RT.Device; using Aitex.Core.RT.Event; using Aitex.Core.RT.IOCore; using Aitex.Core.RT.OperationCenter; using Aitex.Core.RT.SCCore; using Aitex.Core.RT.Tolerance; using Aitex.Core.Util; using SorterRT.Modules; namespace Virgo_DRT.Devices.IODevices { //will be upgrade later public class MfcBase1 : BaseDevice, IDevice { public virtual double SetPoint { get; set; } public virtual bool IsOutOfTolerance { get; } public MfcBase1() { } public virtual bool Initialize() { return true; } public virtual void Monitor() { } public virtual void Reset() { } public virtual void Terminate() { } public virtual void Ramp(int time) { } public virtual void Ramp(double target, int time) { } public virtual void StopRamp() { } } public class IoMfc : MfcBase1 { public string Unit { get; set; } [Subscription(AITMfcDataPropertyName.Scale)] public double Scale { get { if (_scN2Scale == null || _scScaleFactor == null) return 0; return _scN2Scale.IntValue * _scScaleFactor.DoubleValue; } } [Subscription(AITMfcDataPropertyName.IsEnable)] public bool Enable { get { if (_scEnable != null) return _scEnable.BoolValue; return false; } } [Subscription(AITMfcDataPropertyName.SetPoint)] public override double SetPoint { get { if (_aoFlow != null) { byte[] high = BitConverter.GetBytes(_aoFlow.Buffer[_aoFlow.Index]); byte[] low = BitConverter.GetBytes(_aoFlow.Buffer[_aoFlow.Index + 1]); float flow = BitConverter.ToSingle(new[] { high[0], high[1], low[0], low[1] }, 0); return flow * Scale / RtInstance.ANALOG_TRANS_RANGE; } return 0; } set { if (_aoFlow != null) { byte[] flow = BitConverter.GetBytes((float)(value * RtInstance.ANALOG_TRANS_RANGE / Scale)); _aoFlow.Buffer[_aoFlow.Index] = BitConverter.ToInt16(flow, 0); _aoFlow.Buffer[_aoFlow.Index + 1] = BitConverter.ToInt16(flow, 2); } } } [Subscription(AITMfcDataPropertyName.DefaultSetPoint)] public double DefaultSetPoint { get { if (_scDefaultSetPoint != null) return _scDefaultSetPoint.IntValue; return 0; } } [Subscription(AITMfcDataPropertyName.FeedBack)] public double FeedBack { get { if (_aiFlow != null) { byte[] high = BitConverter.GetBytes(_aiFlow.Buffer[_aiFlow.Index]); byte[] low = BitConverter.GetBytes(_aiFlow.Buffer[_aiFlow.Index + 1]); float flow = BitConverter.ToSingle(new[] { high[0], high[1], low[0], low[1] }, 0); return (_scRegulationFactor != null && _scRegulationFactor.IntValue > 0) ? flow * Scale / RtInstance.ANALOG_TRANS_RANGE / _scRegulationFactor.IntValue : flow * Scale / RtInstance.ANALOG_TRANS_RANGE; } return 0; } } [Subscription(AITMfcDataPropertyName.IsOutOfTolerance)] public override bool IsOutOfTolerance { get { return _toleranceChecker.Result; } } [Subscription(AITMfcDataPropertyName.IsEnableAlarm)] public bool EnableAlarm { get { if (_scEnableAlarm != null) return _scEnableAlarm.BoolValue; return false; } } [Subscription(AITMfcDataPropertyName.AlarmRange)] public double AlarmRange { get { if (_scAlarmRange != null) return _scAlarmRange.IntValue; return 0; } } [Subscription(AITMfcDataPropertyName.AlarmTime)] public double AlarmTime { get { if (_scAlarmTime != null) return _scAlarmTime.IntValue; return 0; } } [Subscription(AITMfcDataPropertyName.MfcAlarm)] public bool MfcAlarm { get { return _bMfcAlarm; } } [Subscription(AITMfcDataPropertyName.PressureAlarm)] public bool PressureAlarm { get { return _diPressureAlarm != null ? _diPressureAlarm.Value : true; } } [Subscription(AITMfcDataPropertyName.IsOffline)] public bool IsOffline { get { if (_diOffline != null) return _diOffline.Value; return false; } } public string DisplayName { get { if (_scGasName != null) return _scGasName.StringValue; return Display; } } private DeviceTimer rampTimer = new DeviceTimer(); private double rampTarget; private double rampInitValue; private int rampTime; private bool _bMfcAlarm = false; private ToleranceChecker _toleranceChecker = new ToleranceChecker(); private AIAccessor _aiFlow; private AOAccessor _aoFlow; private AOAccessor _aoRange; private DIAccessor _diOffline; private DIAccessor _diPressureAlarm; private SCConfigItem _scGasName; private SCConfigItem _scEnable; private SCConfigItem _scN2Scale; private SCConfigItem _scScaleFactor; private SCConfigItem _scAlarmRange; private SCConfigItem _scEnableAlarm; private SCConfigItem _scAlarmTime; private SCConfigItem _scDefaultSetPoint; private SCConfigItem _scRegulationFactor; private R_TRIG _trigOffline = new R_TRIG(); private F_TRIG _trigPressureAlarm = new F_TRIG(); private string _uniqueName; public IoMfc(string module, XmlElement node, string ioModule = "") { Unit = node.GetAttribute("unit"); base.Module = module; base.Name = node.GetAttribute("id"); base.Display = node.GetAttribute("display"); base.DeviceID = node.GetAttribute("schematicId"); _aoRange = ParseAoNode("aoRange", node, ioModule); _diOffline = ParseDiNode("diOffline", node, ioModule); _aiFlow = ParseAiNode("aiFlow", node, ioModule); _aoFlow = ParseAoNode("aoFlow", node, ioModule); _diPressureAlarm = ParseDiNode("diPressureAlarm", node, ioModule); _scGasName = SC.GetConfigItem($"{Module}.{Name}.GasName"); _scEnable = SC.GetConfigItem($"{Module}.{Name}.Enable"); _scN2Scale = SC.GetConfigItem($"{Module}.{Name}.MfcN2Scale"); _scScaleFactor = SC.GetConfigItem($"{Module}.{Name}.MfcScaleFactor"); _scAlarmRange = SC.GetConfigItem($"{Module}.{Name}.MfcAlarmRange"); _scEnableAlarm = SC.GetConfigItem($"{Module}.{Name}.MfcEnableAlarm"); _scAlarmTime = SC.GetConfigItem($"{Module}.{Name}.MfcAlarmTime"); _scDefaultSetPoint = SC.GetConfigItem($"{Module}.{Name}.DefaultSetPoint"); _scRegulationFactor = SC.GetConfigItem($"{module}.{Name}.FlowRegulationFactor"); _uniqueName = $"{Module}.{Name}"; #if DEBUG Debug.Assert(!string.IsNullOrWhiteSpace(_scGasName.StringValue)); Debug.Assert(null != _scN2Scale); Debug.Assert(null != _aoFlow); Debug.Assert(null != _aiFlow); #endif } public override bool Initialize() { DATA.Subscribe($"{Module}.{Name}", () => { AITMfcData data = new AITMfcData { Type = "MFC", UniqueName = _uniqueName, DeviceName = Name, DeviceSchematicId = DeviceID, DisplayName = DisplayName, FeedBack = FeedBack, SetPoint = SetPoint, Scale = Scale, IsOffline = IsOffline, }; return data; }, SubscriptionAttribute.FLAG.IgnoreSaveDB); OP.Subscribe($"{Module}.{Name}.{AITMfcOperation.Ramp}", (name, args) => { double target = (double)args[0]; target = Math.Min(target, Scale); target = Math.Max(target, 0); Ramp(target, 0); EV.PostInfoLog(Module, $"Ramp to {target}{Unit}"); return true; }); DEVICE.Register($"{Module}.{Name}.{AITMfcOperation.Ramp}", (out string reason, int time, object[] param) => { double target = Convert.ToDouble((string)param[0]); target = Math.Min(target, Scale); target = Math.Max(target, 0); Ramp(target, time); reason = $"{Display} ramp to {target}{Unit}"; return true; }); //@AAA use recipe DEVICE.Register($"{Module}.{Name}", (out string reason, int time, object[] param) => { double target = Convert.ToDouble((string)param[0]); target = Math.Min(target, Scale); target = Math.Max(target, 0); Ramp(target, time); reason = $"{Display} ramp to {target}{Unit}"; return true; }); return true; } public override void Monitor() { if (Enable) { Ramping(); CheckTolerance(); if (_aoRange != null) _aoRange.Value = (short)Scale; _trigOffline.CLK = IsOffline; if (_trigOffline.Q) { EV.PostAlarmLog(Module, string.Format("{0} is offline", DisplayName)); _bMfcAlarm = true; } _trigPressureAlarm.CLK = PressureAlarm; if (_trigPressureAlarm.Q) EV.PostAlarmLog(Module, $"{Name} Pressure Alarm"); } } public override void Reset() { _bMfcAlarm = false; _toleranceChecker.Reset(AlarmTime); _trigPressureAlarm.RST = true; _trigOffline.RST = true; } public override void Terminate() { Ramp(DefaultSetPoint, 0); } public override void Ramp(int time) { Ramp(DefaultSetPoint, time); } public override void Ramp(double target, int time) { target = Math.Max(0, target); target = Math.Min(Scale, target); rampInitValue = SetPoint; //ramp 初始值取当前设定值,而非实际读取值。零漂问题 rampTime = time; rampTarget = target; rampTimer.Start(rampTime); } public override void StopRamp() { Ramp(SetPoint, 0); } private void Ramping() { if (rampTimer.IsTimeout() || rampTime == 0) { SetPoint = rampTarget; } else { SetPoint = rampInitValue + (rampTarget - rampInitValue) * rampTimer.GetElapseTime() / rampTime; } } private void CheckTolerance() { if (!EnableAlarm) return; // 流率检查 _toleranceChecker.Monitor(FeedBack, SetPoint - Math.Abs(AlarmRange), SetPoint + Math.Abs(AlarmRange), AlarmTime); if (_toleranceChecker.Trig) { EV.PostAlarmLog(Module, Display + $" 越界 in {AlarmTime:0} seconds"); _bMfcAlarm = true; } } } }