using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Text; using System.Threading.Tasks; using MECF.Framework.Common.Properties; namespace MECF.Framework.Common.Utilities { public static class ModbusUtility { private static readonly ushort[] CrcTable = { 0X0000, 0XC0C1, 0XC181, 0X0140, 0XC301, 0X03C0, 0X0280, 0XC241, 0XC601, 0X06C0, 0X0780, 0XC741, 0X0500, 0XC5C1, 0XC481, 0X0440, 0XCC01, 0X0CC0, 0X0D80, 0XCD41, 0X0F00, 0XCFC1, 0XCE81, 0X0E40, 0X0A00, 0XCAC1, 0XCB81, 0X0B40, 0XC901, 0X09C0, 0X0880, 0XC841, 0XD801, 0X18C0, 0X1980, 0XD941, 0X1B00, 0XDBC1, 0XDA81, 0X1A40, 0X1E00, 0XDEC1, 0XDF81, 0X1F40, 0XDD01, 0X1DC0, 0X1C80, 0XDC41, 0X1400, 0XD4C1, 0XD581, 0X1540, 0XD701, 0X17C0, 0X1680, 0XD641, 0XD201, 0X12C0, 0X1380, 0XD341, 0X1100, 0XD1C1, 0XD081, 0X1040, 0XF001, 0X30C0, 0X3180, 0XF141, 0X3300, 0XF3C1, 0XF281, 0X3240, 0X3600, 0XF6C1, 0XF781, 0X3740, 0XF501, 0X35C0, 0X3480, 0XF441, 0X3C00, 0XFCC1, 0XFD81, 0X3D40, 0XFF01, 0X3FC0, 0X3E80, 0XFE41, 0XFA01, 0X3AC0, 0X3B80, 0XFB41, 0X3900, 0XF9C1, 0XF881, 0X3840, 0X2800, 0XE8C1, 0XE981, 0X2940, 0XEB01, 0X2BC0, 0X2A80, 0XEA41, 0XEE01, 0X2EC0, 0X2F80, 0XEF41, 0X2D00, 0XEDC1, 0XEC81, 0X2C40, 0XE401, 0X24C0, 0X2580, 0XE541, 0X2700, 0XE7C1, 0XE681, 0X2640, 0X2200, 0XE2C1, 0XE381, 0X2340, 0XE101, 0X21C0, 0X2080, 0XE041, 0XA001, 0X60C0, 0X6180, 0XA141, 0X6300, 0XA3C1, 0XA281, 0X6240, 0X6600, 0XA6C1, 0XA781, 0X6740, 0XA501, 0X65C0, 0X6480, 0XA441, 0X6C00, 0XACC1, 0XAD81, 0X6D40, 0XAF01, 0X6FC0, 0X6E80, 0XAE41, 0XAA01, 0X6AC0, 0X6B80, 0XAB41, 0X6900, 0XA9C1, 0XA881, 0X6840, 0X7800, 0XB8C1, 0XB981, 0X7940, 0XBB01, 0X7BC0, 0X7A80, 0XBA41, 0XBE01, 0X7EC0, 0X7F80, 0XBF41, 0X7D00, 0XBDC1, 0XBC81, 0X7C40, 0XB401, 0X74C0, 0X7580, 0XB541, 0X7700, 0XB7C1, 0XB681, 0X7640, 0X7200, 0XB2C1, 0XB381, 0X7340, 0XB101, 0X71C0, 0X7080, 0XB041, 0X5000, 0X90C1, 0X9181, 0X5140, 0X9301, 0X53C0, 0X5280, 0X9241, 0X9601, 0X56C0, 0X5780, 0X9741, 0X5500, 0X95C1, 0X9481, 0X5440, 0X9C01, 0X5CC0, 0X5D80, 0X9D41, 0X5F00, 0X9FC1, 0X9E81, 0X5E40, 0X5A00, 0X9AC1, 0X9B81, 0X5B40, 0X9901, 0X59C0, 0X5880, 0X9841, 0X8801, 0X48C0, 0X4980, 0X8941, 0X4B00, 0X8BC1, 0X8A81, 0X4A40, 0X4E00, 0X8EC1, 0X8F81, 0X4F40, 0X8D01, 0X4DC0, 0X4C80, 0X8C41, 0X4400, 0X84C1, 0X8581, 0X4540, 0X8701, 0X47C0, 0X4680, 0X8641, 0X8201, 0X42C0, 0X4380, 0X8341, 0X4100, 0X81C1, 0X8081, 0X4040 }; /// /// Converts four UInt16 values into a IEEE 64 floating point format. /// /// Highest-order ushort value. /// Second-to-highest-order ushort value. /// Second-to-lowest-order ushort value. /// Lowest-order ushort value. /// IEEE 64 floating point value. public static double GetDouble(ushort b3, ushort b2, ushort b1, ushort b0) { byte[] value = BitConverter.GetBytes(b0) .Concat(BitConverter.GetBytes(b1)) .Concat(BitConverter.GetBytes(b2)) .Concat(BitConverter.GetBytes(b3)) .ToArray(); return BitConverter.ToDouble(value, 0); } /// /// Converts two UInt16 values into a IEEE 32 floating point format. /// /// High order ushort value. /// Low order ushort value. /// IEEE 32 floating point value. public static float GetSingle(ushort highOrderValue, ushort lowOrderValue) { byte[] value = BitConverter.GetBytes(lowOrderValue) .Concat(BitConverter.GetBytes(highOrderValue)) .ToArray(); return BitConverter.ToSingle(value, 0); } /// /// Converts two UInt16 values into a UInt32. /// public static uint GetUInt32(ushort highOrderValue, ushort lowOrderValue) { byte[] value = BitConverter.GetBytes(lowOrderValue) .Concat(BitConverter.GetBytes(highOrderValue)) .ToArray(); return BitConverter.ToUInt32(value, 0); } /// /// Converts an array of bytes to an ASCII byte array. /// /// The byte array. /// An array of ASCII byte values. public static byte[] GetAsciiBytes(params byte[] numbers) { return Encoding.UTF8.GetBytes(numbers.SelectMany(n => n.ToString("X2")).ToArray()); } /// /// Converts an array of UInt16 to an ASCII byte array. /// /// The ushort array. /// An array of ASCII byte values. public static byte[] GetAsciiBytes(params ushort[] numbers) { return Encoding.UTF8.GetBytes(numbers.SelectMany(n => n.ToString("X4")).ToArray()); } /// /// Converts a network order byte array to an array of UInt16 values in host order. /// /// The network order byte array. /// The host order ushort array. public static ushort[] NetworkBytesToHostUInt16(byte[] networkBytes) { if (networkBytes == null) { throw new ArgumentNullException(nameof(networkBytes)); } if (networkBytes.Length % 2 != 0) { throw new FormatException("NetworkBytesNotEven"); } ushort[] result = new ushort[networkBytes.Length / 2]; for (int i = 0; i < result.Length; i++) { result[i] = (ushort)IPAddress.NetworkToHostOrder(BitConverter.ToInt16(networkBytes, i * 2)); } return result; } /// /// Converts a hex string to a byte array. /// /// The hex string. /// Array of bytes. public static byte[] HexToBytes(string hex) { if (hex == null) { throw new ArgumentNullException(nameof(hex)); } if (hex.Length % 2 != 0) { throw new FormatException("HexCharacterCountNotEven"); } byte[] bytes = new byte[hex.Length / 2]; for (int i = 0; i < bytes.Length; i++) { bytes[i] = Convert.ToByte(hex.Substring(i * 2, 2), 16); } return bytes; } /// /// Calculate Longitudinal Redundancy Check. /// /// The data used in LRC. /// LRC value. public static byte CalculateLrc(byte[] data) { if (data == null) { throw new ArgumentNullException(nameof(data)); } byte lrc = 0; foreach (byte b in data) { lrc += b; } lrc = (byte)((lrc ^ 0xFF) + 1); return lrc; } /// /// Calculate Cyclical Redundancy Check. /// /// The data used in CRC. /// CRC value. public static byte[] CalculateCrc(byte[] data) { if (data == null) { throw new ArgumentNullException(nameof(data)); } ushort crc = ushort.MaxValue; foreach (byte b in data) { byte tableIndex = (byte)(crc ^ b); crc >>= 8; crc ^= CrcTable[tableIndex]; } return BitConverter.GetBytes(crc); } } public static class Crc16 { const ushort polynomial = 0xA001; static readonly ushort[] table = new ushort[256]; public static ushort ComputeChecksum(byte[] bytes) { ushort crc = 0; for (int i = 0; i < bytes.Length; ++i) { byte index = (byte)(crc ^ bytes[i]); crc = (ushort)((crc >> 8) ^ table[index]); } return crc; } static Crc16() { ushort value; ushort temp; for (ushort i = 0; i < table.Length; ++i) { value = 0; temp = i; for (byte j = 0; j < 8; ++j) { if (((value ^ temp) & 0x0001) != 0) { value = (ushort)((value >> 1) ^ polynomial); } else { value >>= 1; } temp >>= 1; } table[i] = value; } } public static ushort Crc16Ccitt(byte[] bytes) { const ushort poly = 4129; ushort[] table = new ushort[256]; ushort initialValue = 0xffff; ushort temp, a; ushort crc = initialValue; for (int i = 0; i < table.Length; ++i) { temp = 0; a = (ushort)(i << 8); for (int j = 0; j < 8; ++j) { if (((temp ^ a) & 0x8000) != 0) temp = (ushort)((temp << 1) ^ poly); else temp <<= 1; a <<= 1; } table[i] = temp; } for (int i = 0; i < bytes.Length; ++i) { crc = (ushort)((crc << 8) ^ table[((crc >> 8) ^ (0xff & bytes[i]))]); } return crc; } //TruPlasmaRF //same vaule with above function, but diffent with TruPlasmaRF document example public static ushort CRC16_CCITT(byte[] data) { int length = data.Length; const ushort poly = 0x1021; ushort crc = 0xffff; for (int i = 0; i < length; i++) { byte curByte = data[i]; crc = (ushort)(crc ^ (curByte << 8)); for (int n = 1; n <= 8; n++) { if((crc&0x8000) > 0) { crc = (ushort)((crc << 1) ^ poly); } else { crc = (ushort)(crc << 1); } } } return crc; } public static ushort CRC16_ModbusRTU(byte[] bytes) { ushort value; ushort newLoad = 0xffff, In_value; int count = 0; for (int i = 0; i < bytes.Length; i++) { value = (ushort)bytes[i]; newLoad = (ushort)(Convert.ToInt32(value) ^ Convert.ToInt32(newLoad)); In_value = 0xA001; while (count < 8) { if (Convert.ToInt32(newLoad) % 2 == 1)//判断最低位是否为1 { newLoad -= 0x00001; newLoad = (ushort)(Convert.ToInt32(newLoad) / 2);//右移一位 count++;//计数器加一 newLoad = (ushort)(Convert.ToInt32(newLoad) ^ Convert.ToInt32(In_value));//异或操作 } else { newLoad = (ushort)(Convert.ToInt32(newLoad) / 2);//右移一位 count++;//计数器加一 } } count = 0; } return newLoad; } } }