using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Text;
using System.Threading.Tasks;
using MECF.Framework.Common.Properties;
namespace MECF.Framework.Common.Utilities
{
public static class ModbusUtility
{
private static readonly ushort[] CrcTable =
{
0X0000, 0XC0C1, 0XC181, 0X0140, 0XC301, 0X03C0, 0X0280, 0XC241,
0XC601, 0X06C0, 0X0780, 0XC741, 0X0500, 0XC5C1, 0XC481, 0X0440,
0XCC01, 0X0CC0, 0X0D80, 0XCD41, 0X0F00, 0XCFC1, 0XCE81, 0X0E40,
0X0A00, 0XCAC1, 0XCB81, 0X0B40, 0XC901, 0X09C0, 0X0880, 0XC841,
0XD801, 0X18C0, 0X1980, 0XD941, 0X1B00, 0XDBC1, 0XDA81, 0X1A40,
0X1E00, 0XDEC1, 0XDF81, 0X1F40, 0XDD01, 0X1DC0, 0X1C80, 0XDC41,
0X1400, 0XD4C1, 0XD581, 0X1540, 0XD701, 0X17C0, 0X1680, 0XD641,
0XD201, 0X12C0, 0X1380, 0XD341, 0X1100, 0XD1C1, 0XD081, 0X1040,
0XF001, 0X30C0, 0X3180, 0XF141, 0X3300, 0XF3C1, 0XF281, 0X3240,
0X3600, 0XF6C1, 0XF781, 0X3740, 0XF501, 0X35C0, 0X3480, 0XF441,
0X3C00, 0XFCC1, 0XFD81, 0X3D40, 0XFF01, 0X3FC0, 0X3E80, 0XFE41,
0XFA01, 0X3AC0, 0X3B80, 0XFB41, 0X3900, 0XF9C1, 0XF881, 0X3840,
0X2800, 0XE8C1, 0XE981, 0X2940, 0XEB01, 0X2BC0, 0X2A80, 0XEA41,
0XEE01, 0X2EC0, 0X2F80, 0XEF41, 0X2D00, 0XEDC1, 0XEC81, 0X2C40,
0XE401, 0X24C0, 0X2580, 0XE541, 0X2700, 0XE7C1, 0XE681, 0X2640,
0X2200, 0XE2C1, 0XE381, 0X2340, 0XE101, 0X21C0, 0X2080, 0XE041,
0XA001, 0X60C0, 0X6180, 0XA141, 0X6300, 0XA3C1, 0XA281, 0X6240,
0X6600, 0XA6C1, 0XA781, 0X6740, 0XA501, 0X65C0, 0X6480, 0XA441,
0X6C00, 0XACC1, 0XAD81, 0X6D40, 0XAF01, 0X6FC0, 0X6E80, 0XAE41,
0XAA01, 0X6AC0, 0X6B80, 0XAB41, 0X6900, 0XA9C1, 0XA881, 0X6840,
0X7800, 0XB8C1, 0XB981, 0X7940, 0XBB01, 0X7BC0, 0X7A80, 0XBA41,
0XBE01, 0X7EC0, 0X7F80, 0XBF41, 0X7D00, 0XBDC1, 0XBC81, 0X7C40,
0XB401, 0X74C0, 0X7580, 0XB541, 0X7700, 0XB7C1, 0XB681, 0X7640,
0X7200, 0XB2C1, 0XB381, 0X7340, 0XB101, 0X71C0, 0X7080, 0XB041,
0X5000, 0X90C1, 0X9181, 0X5140, 0X9301, 0X53C0, 0X5280, 0X9241,
0X9601, 0X56C0, 0X5780, 0X9741, 0X5500, 0X95C1, 0X9481, 0X5440,
0X9C01, 0X5CC0, 0X5D80, 0X9D41, 0X5F00, 0X9FC1, 0X9E81, 0X5E40,
0X5A00, 0X9AC1, 0X9B81, 0X5B40, 0X9901, 0X59C0, 0X5880, 0X9841,
0X8801, 0X48C0, 0X4980, 0X8941, 0X4B00, 0X8BC1, 0X8A81, 0X4A40,
0X4E00, 0X8EC1, 0X8F81, 0X4F40, 0X8D01, 0X4DC0, 0X4C80, 0X8C41,
0X4400, 0X84C1, 0X8581, 0X4540, 0X8701, 0X47C0, 0X4680, 0X8641,
0X8201, 0X42C0, 0X4380, 0X8341, 0X4100, 0X81C1, 0X8081, 0X4040
};
///
/// Converts four UInt16 values into a IEEE 64 floating point format.
///
/// Highest-order ushort value.
/// Second-to-highest-order ushort value.
/// Second-to-lowest-order ushort value.
/// Lowest-order ushort value.
/// IEEE 64 floating point value.
public static double GetDouble(ushort b3, ushort b2, ushort b1, ushort b0)
{
byte[] value = BitConverter.GetBytes(b0)
.Concat(BitConverter.GetBytes(b1))
.Concat(BitConverter.GetBytes(b2))
.Concat(BitConverter.GetBytes(b3))
.ToArray();
return BitConverter.ToDouble(value, 0);
}
///
/// Converts two UInt16 values into a IEEE 32 floating point format.
///
/// High order ushort value.
/// Low order ushort value.
/// IEEE 32 floating point value.
public static float GetSingle(ushort highOrderValue, ushort lowOrderValue)
{
byte[] value = BitConverter.GetBytes(lowOrderValue)
.Concat(BitConverter.GetBytes(highOrderValue))
.ToArray();
return BitConverter.ToSingle(value, 0);
}
///
/// Converts two UInt16 values into a UInt32.
///
public static uint GetUInt32(ushort highOrderValue, ushort lowOrderValue)
{
byte[] value = BitConverter.GetBytes(lowOrderValue)
.Concat(BitConverter.GetBytes(highOrderValue))
.ToArray();
return BitConverter.ToUInt32(value, 0);
}
///
/// Converts an array of bytes to an ASCII byte array.
///
/// The byte array.
/// An array of ASCII byte values.
public static byte[] GetAsciiBytes(params byte[] numbers)
{
return Encoding.UTF8.GetBytes(numbers.SelectMany(n => n.ToString("X2")).ToArray());
}
///
/// Converts an array of UInt16 to an ASCII byte array.
///
/// The ushort array.
/// An array of ASCII byte values.
public static byte[] GetAsciiBytes(params ushort[] numbers)
{
return Encoding.UTF8.GetBytes(numbers.SelectMany(n => n.ToString("X4")).ToArray());
}
///
/// Converts a network order byte array to an array of UInt16 values in host order.
///
/// The network order byte array.
/// The host order ushort array.
public static ushort[] NetworkBytesToHostUInt16(byte[] networkBytes)
{
if (networkBytes == null)
{
throw new ArgumentNullException(nameof(networkBytes));
}
if (networkBytes.Length % 2 != 0)
{
throw new FormatException("NetworkBytesNotEven");
}
ushort[] result = new ushort[networkBytes.Length / 2];
for (int i = 0; i < result.Length; i++)
{
result[i] = (ushort)IPAddress.NetworkToHostOrder(BitConverter.ToInt16(networkBytes, i * 2));
}
return result;
}
///
/// Converts a hex string to a byte array.
///
/// The hex string.
/// Array of bytes.
public static byte[] HexToBytes(string hex)
{
if (hex == null)
{
throw new ArgumentNullException(nameof(hex));
}
if (hex.Length % 2 != 0)
{
throw new FormatException("HexCharacterCountNotEven");
}
byte[] bytes = new byte[hex.Length / 2];
for (int i = 0; i < bytes.Length; i++)
{
bytes[i] = Convert.ToByte(hex.Substring(i * 2, 2), 16);
}
return bytes;
}
///
/// Calculate Longitudinal Redundancy Check.
///
/// The data used in LRC.
/// LRC value.
public static byte CalculateLrc(byte[] data)
{
if (data == null)
{
throw new ArgumentNullException(nameof(data));
}
byte lrc = 0;
foreach (byte b in data)
{
lrc += b;
}
lrc = (byte)((lrc ^ 0xFF) + 1);
return lrc;
}
///
/// Calculate Cyclical Redundancy Check.
///
/// The data used in CRC.
/// CRC value.
public static byte[] CalculateCrc(byte[] data)
{
if (data == null)
{
throw new ArgumentNullException(nameof(data));
}
ushort crc = ushort.MaxValue;
foreach (byte b in data)
{
byte tableIndex = (byte)(crc ^ b);
crc >>= 8;
crc ^= CrcTable[tableIndex];
}
return BitConverter.GetBytes(crc);
}
}
public static class Crc16
{
const ushort polynomial = 0xA001;
static readonly ushort[] table = new ushort[256];
public static ushort ComputeChecksum(byte[] bytes)
{
ushort crc = 0;
for (int i = 0; i < bytes.Length; ++i)
{
byte index = (byte)(crc ^ bytes[i]);
crc = (ushort)((crc >> 8) ^ table[index]);
}
return crc;
}
static Crc16()
{
ushort value;
ushort temp;
for (ushort i = 0; i < table.Length; ++i)
{
value = 0;
temp = i;
for (byte j = 0; j < 8; ++j)
{
if (((value ^ temp) & 0x0001) != 0)
{
value = (ushort)((value >> 1) ^ polynomial);
}
else
{
value >>= 1;
}
temp >>= 1;
}
table[i] = value;
}
}
public static ushort Crc16Ccitt(byte[] bytes)
{
const ushort poly = 4129;
ushort[] table = new ushort[256];
ushort initialValue = 0xffff;
ushort temp, a;
ushort crc = initialValue;
for (int i = 0; i < table.Length; ++i)
{
temp = 0;
a = (ushort)(i << 8);
for (int j = 0; j < 8; ++j)
{
if (((temp ^ a) & 0x8000) != 0)
temp = (ushort)((temp << 1) ^ poly);
else
temp <<= 1;
a <<= 1;
}
table[i] = temp;
}
for (int i = 0; i < bytes.Length; ++i)
{
crc = (ushort)((crc << 8) ^ table[((crc >> 8) ^ (0xff & bytes[i]))]);
}
return crc;
}
//TruPlasmaRF
//same vaule with above function, but diffent with TruPlasmaRF document example
public static ushort CRC16_CCITT(byte[] data)
{
int length = data.Length;
const ushort poly = 0x1021;
ushort crc = 0xffff;
for (int i = 0; i < length; i++)
{
byte curByte = data[i];
crc = (ushort)(crc ^ (curByte << 8));
for (int n = 1; n <= 8; n++)
{
if((crc&0x8000) > 0)
{
crc = (ushort)((crc << 1) ^ poly);
}
else
{
crc = (ushort)(crc << 1);
}
}
}
return crc;
}
public static ushort CRC16_ModbusRTU(byte[] bytes)
{
ushort value;
ushort newLoad = 0xffff, In_value;
int count = 0;
for (int i = 0; i < bytes.Length; i++)
{
value = (ushort)bytes[i];
newLoad = (ushort)(Convert.ToInt32(value) ^ Convert.ToInt32(newLoad));
In_value = 0xA001;
while (count < 8)
{
if (Convert.ToInt32(newLoad) % 2 == 1)//判断最低位是否为1
{
newLoad -= 0x00001;
newLoad = (ushort)(Convert.ToInt32(newLoad) / 2);//右移一位
count++;//计数器加一
newLoad = (ushort)(Convert.ToInt32(newLoad) ^ Convert.ToInt32(In_value));//异或操作
}
else
{
newLoad = (ushort)(Convert.ToInt32(newLoad) / 2);//右移一位
count++;//计数器加一
}
}
count = 0;
}
return newLoad;
}
}
}