PMModuleInterlock.cs 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412
  1. using Aitex.Core.RT.DataCenter;
  2. using Aitex.Core.RT.Device.Unit;
  3. using Aitex.Core.RT.Event;
  4. using Aitex.Core.RT.IOCore;
  5. using Aitex.Core.RT.Log;
  6. using Aitex.Core.RT.OperationCenter;
  7. using Aitex.Core.RT.SCCore;
  8. using Aitex.Core.Util;
  9. using MECF.Framework.Common.OperationCenter;
  10. using System;
  11. using System.Collections;
  12. using System.Diagnostics;
  13. using System.Linq;
  14. namespace FurnaceRT.Equipments.PMs
  15. {
  16. public partial class PMModule
  17. {
  18. private SCConfigItem _configAutoControlCoolingValve;
  19. private SCConfigItem _configVacuumSensorPressure;
  20. private SCConfigItem _configAutoControlChiller;
  21. private SCConfigItem _chillerTurnOffIfTempBelow;
  22. private SCConfigItem _chillerTurnOnIfTempAbove;
  23. private PeriodicJob _threadMonitor;
  24. private bool _vac1;
  25. private bool _vac2;
  26. private bool _vac3;
  27. private Stopwatch _vac1Timer = new Stopwatch();
  28. private Stopwatch _vac2Timer = new Stopwatch();
  29. private Stopwatch _vac3Timer = new Stopwatch();
  30. private int _vac1PumpTimeS = 120;
  31. private int _vac2PumpTimeS = 120;
  32. private int _vac3PumpTimeS = 120;
  33. private int _foolProofTime = 5;
  34. private DeviceTimer _plcFoolProofTime = null;
  35. private RD_TRIG _trigPLCConnected = null;
  36. private void InitInterlock()
  37. {
  38. OP.AddCheck($"{Module}.{Name}.Disconnect", new CheckPlcConnect(this));
  39. //OP.AddCheck($"{ChamberDoor.Module}.{ChamberDoor.Name}.Open", new CheckOpenDoor(this));
  40. if (SC.ContainsItem("System.PLCConnectSensorFoolTime"))
  41. _foolProofTime = SC.GetValue<int>("System.PLCConnectSensorFoolTime");
  42. _configAutoControlCoolingValve = SC.GetConfigItem($"PM.{Module}.AutoControlCoolingValve");
  43. _configVacuumSensorPressure = SC.GetConfigItem($"PM.{Module}.VacuumSensorPressure");
  44. _configAutoControlChiller = SC.GetConfigItem($"PM.{Module}.Chiller.EnableAutoAdjust");
  45. _chillerTurnOffIfTempBelow = SC.GetConfigItem($"PM.{Module}.Chiller.TurnOffIfTempBelow");
  46. _chillerTurnOnIfTempAbove = SC.GetConfigItem($"PM.{Module}.Chiller.TurnOnIfTempAbove");
  47. if (SensorPLCHeartBeatPC != null)
  48. {
  49. _trigPLCConnected = new RD_TRIG();
  50. _plcFoolProofTime = new DeviceTimer();
  51. _plcFoolProofTime.Start((_foolProofTime + 2) * 1000);//首次
  52. }
  53. _threadMonitor = new PeriodicJob(100, OnTimer, "interlock thread", true);
  54. }
  55. private void InitUserDefineInterlock()
  56. {
  57. //DATA.Subscribe($"{Module}.Heater1", () => 100);//自定义的Interlock limit
  58. InterlockManager.Instance.UserDefineInterlockHandler += UserDefineInterlockHandler;
  59. InterlockManager.Instance.UserDefineInterlocks += UserDefineInterlocks;
  60. //DATA.Subscribe("UserDefineInterlock", () => InterlockManager.Instance.UserDefineFlagCurrentValues);
  61. //DATA.Subscribe("UserDefineCurrent", () => InterlockManager.Instance.UserDefineCurrentValues);
  62. }
  63. //自定义的interlock action
  64. private bool UserDefineInterlocks(string name)
  65. {
  66. switch (name)
  67. {
  68. case "PM1.Heater1":
  69. return true;
  70. }
  71. return false;
  72. }
  73. //设置自定义的interlock action
  74. private bool UserDefineInterlockHandler(string name, object value)
  75. {
  76. switch(name)
  77. {
  78. case "PM1.Heater1":
  79. //设置Heater的值
  80. return true;
  81. }
  82. return false;
  83. }
  84. private class CheckOpenDoor : IInterlockChecker
  85. {
  86. private PMModule _pm;
  87. public CheckOpenDoor(PMModule pm)
  88. {
  89. _pm = pm;
  90. }
  91. public bool CanDo(out string reason, object[] args)
  92. {
  93. if (_pm.ChamberPressure < SC.GetValue<double>("PM.AtmPressureBase"))
  94. {
  95. reason = $"{_pm.Module} chamber pressure {_pm.ChamberPressure:F3} Torr less than {SC.GetValue<double>("PM.AtmPressureBase")} [PM.AtmPressureBase], can not open door";
  96. return false;
  97. }
  98. reason = string.Empty;
  99. return true;
  100. }
  101. }
  102. private class CheckPlcConnect : IInterlockChecker
  103. {
  104. private PMModule _pm;
  105. public CheckPlcConnect(PMModule pm)
  106. {
  107. _pm = pm;
  108. }
  109. public bool CanDo(out string reason, object[] args)
  110. {
  111. if (_pm.IsBusy)
  112. {
  113. reason = $"{_pm.Module} is in {_pm.StringFsmStatus} status, can not disconnect, should be idle";
  114. return false;
  115. }
  116. reason = string.Empty;
  117. return true;
  118. }
  119. }
  120. public bool OnTimer()
  121. {
  122. try
  123. {
  124. MonitorN2Purge();
  125. MonitorAux();
  126. MonitorFfu();
  127. lock (_alarmConditionLocker)
  128. {
  129. MonitorAlarmCondition();
  130. }
  131. if (!IsProcessing && TrigVGUnitConversion != null && SC.GetStringValue($"{Module}.APC.PressureUnit").ToLower() == "pa")
  132. {
  133. TrigVGUnitConversion.SetTrigger(SC.GetStringValue($"{Module}.APC.PressureUnit").ToLower() == "pa", out _);
  134. }
  135. //MonitorVAC1();
  136. //MonitorVAC2();
  137. //MonitorVAC3();
  138. MonitorPLCConnected();
  139. //foreach (var item in _inCommandLst)
  140. //{
  141. // if (item == null)
  142. // continue;
  143. // if (!_inCommandTirgs.ContainsKey(item.Name))
  144. // {
  145. // _inCommandTirgs.Add(item.Name, new RD_TRIG());
  146. // }
  147. // _inCommandTirgs[item.Name].CLK = item.Value;
  148. //}
  149. //if (_inCommandTirgs[SensorHECPowerONSW.Name].R)
  150. //{
  151. // _trigTHPowerEN.SetTrigger(true, out _);
  152. // _trigHECPowerONLamp.SetTrigger(true, out _);
  153. //}
  154. //if (_inCommandTirgs[SensorHECPowerONSW.Name].T)
  155. //{
  156. //}
  157. //if (_inCommandTirgs[SensorTHBreakOK.Name].R)
  158. //{
  159. //}
  160. //if (_inCommandTirgs[SensorTHBreakOK.Name].T)
  161. //{
  162. // _trigTHPowerEN.SetTrigger(false, out _);
  163. // _trigHECPowerONLamp.SetTrigger(false, out _);
  164. //}
  165. ProcessAlarmSignal();
  166. //if (IV2Valve.Status != SensorVG2LOW.Value)
  167. // IV2Valve.TurnValve(SensorVG2LOW.Value, out _);
  168. //if (IV2Valve.Status != SensorVG2LOW.Value)
  169. // VV2Valve.TurnValve(SensorTubeOverPressure.Value, out _);
  170. if (IsInit || !IsInstalled)
  171. return true;
  172. //cooling 阀门
  173. if (_configAutoControlCoolingValve == null || _configAutoControlCoolingValve.BoolValue)
  174. {
  175. //if (ElectricalCoolingValve.Status != MainChiller.IsRunning)
  176. // ElectricalCoolingValve.TurnValve(MainChiller.IsRunning, out _);
  177. //if (MicrowaveCoolingValve.Status != MainChiller.IsRunning)
  178. // MicrowaveCoolingValve.TurnValve(MainChiller.IsRunning, out _);
  179. //if (ChamberLidCoolingValve.Status != MainChiller.IsRunning)
  180. // ChamberLidCoolingValve.TurnValve(MainChiller.IsRunning, out _);
  181. }
  182. //auto control chiller
  183. if (_configAutoControlChiller != null && _configAutoControlChiller.BoolValue && _chillerTurnOffIfTempBelow != null && _chillerTurnOnIfTempAbove != null)
  184. {
  185. //if (!MainChiller.HasAlarm)
  186. //{
  187. // if (MainChiller.IsRunning && (ChamberHeater1.Feedback < _chillerTurnOffIfTempBelow.DoubleValue))
  188. // {
  189. // if (!MainChiller.SetMainPowerOnOff(false, out string reason))
  190. // {
  191. // LOG.Write(reason);
  192. // }
  193. // }else if (!MainChiller.IsRunning && (ChamberHeater1.Feedback > _chillerTurnOnIfTempAbove.DoubleValue))
  194. // {
  195. // if (!MainChiller.SetMainPowerOnOff(true, out string reason))
  196. // {
  197. // LOG.Write(reason);
  198. // }
  199. // }
  200. //}
  201. }
  202. //压力保护计
  203. double pressure = 3.0;
  204. if (_configVacuumSensorPressure != null)
  205. pressure = _configVacuumSensorPressure.DoubleValue;
  206. if (pressure > 30.0)
  207. pressure = 30.0;
  208. //bool canOpen = ChamberMonitorPressureGauge.Value < pressure;
  209. //if (VacuumSensorValve.Status != canOpen)
  210. //{
  211. // VacuumSensorValve.TurnValve(canOpen, out _);
  212. //}
  213. ////interlock ignore
  214. //SignalExhaustAlarm.SetIgnoreError(SC.GetValue<bool>($"PM.{Module}.Signal.IgnoreExhaustAlarm"));
  215. }
  216. catch (Exception ex)
  217. {
  218. LOG.Write(ex);
  219. }
  220. return true;
  221. }
  222. private void MonitorPLCConnected()
  223. {
  224. if (SensorPLCHeartBeatPC != null)
  225. {
  226. _trigPLCConnected.CLK = SensorPLCHeartBeatPC.Value;
  227. if (_trigPLCConnected.T || _trigPLCConnected.R)
  228. {
  229. _plcFoolProofTime.Start(_foolProofTime * 1000);
  230. }
  231. if (_plcFoolProofTime.IsTimeout())
  232. {
  233. _plcFoolProofTime.Stop();
  234. SensorPLCConnectedAlarm?.Set($"Connected Status keep {_trigPLCConnected.CLK} out of {_foolProofTime}s");
  235. }
  236. }
  237. }
  238. private void ProcessAlarmSignal()
  239. {
  240. bool isTrig = false;
  241. foreach (var signal in _alarmSignals)
  242. {
  243. if (signal.RrigSignalOn.T && signal.IsAlarmAutoRecovery)
  244. {
  245. var item = _triggeredAlarmList.FirstOrDefault(x => x.EventEnum == signal.AlarmTriggered.EventEnum);
  246. if (item != null)
  247. {
  248. item.Reset();
  249. _triggeredAlarmList.Remove(item);
  250. EV.ClearAlarmEvent(item.EventEnum);
  251. }
  252. isTrig = true;
  253. signal.AlarmRecovery?.Set();
  254. }
  255. }
  256. if (isTrig)
  257. {
  258. int count = 0;
  259. var alarms = EV.GetAlarmEvent();
  260. foreach (var alarm in alarms)
  261. {
  262. if (alarm.Level == EventLevel.Alarm && alarm.Source == Name)
  263. count++;
  264. }
  265. if (count == 0)
  266. CheckToPostMessage((int)MSG.Reset);
  267. }
  268. }
  269. private void MonitorVAC1()
  270. {
  271. if (_vac1Timer == null)
  272. _vac1Timer = new Stopwatch();
  273. if (ValveAV24.Status)
  274. {
  275. _vac1 = false;
  276. if (_vac1Timer.IsRunning)
  277. _vac1Timer.Stop();
  278. }
  279. if(!ValveAV9.Status &&
  280. !ValveAV16.Status &&
  281. !ValveAV20.Status &&
  282. !ValveAV24.Status &&
  283. ValveAV26.Status &&
  284. (ValveAV33.Status || ValveAV35.Status) &&
  285. ValveAV83.Status &&
  286. ValveAV71.Status &&
  287. (APC.ModeFeedback == 0 || APC.ModeFeedback == 6) &&//0=idle;6=full open
  288. SensorVG11Status.Value && !AlarmSignalVG11HighAlarm.Value)
  289. {
  290. if (!_vac1Timer.IsRunning)
  291. _vac1Timer.Restart();
  292. if(_vac1Timer.ElapsedMilliseconds > _vac1PumpTimeS * 1000)
  293. _vac1 = true;
  294. }
  295. else
  296. {
  297. if (_vac1Timer.IsRunning)
  298. _vac1Timer.Stop();
  299. }
  300. }
  301. private void MonitorVAC2()
  302. {
  303. if (_vac2Timer == null)
  304. _vac2Timer = new Stopwatch();
  305. if (ValveAV9.Status)
  306. {
  307. _vac2 = false;
  308. if (_vac2Timer.IsRunning)
  309. _vac2Timer.Stop();
  310. }
  311. if (!ValveAV9.Status &&
  312. !ValveAV16.Status &&
  313. !ValveAV20.Status &&
  314. !ValveAV24.Status &&
  315. ValveAV12.Status &&
  316. ValveAV14.Status &&
  317. ValveAV28.Status &&
  318. ValveAV29.Status &&
  319. ValveAV36.Status &&
  320. ValveAV37.Status &&
  321. ValveAV81.Status &&
  322. ValveAV71.Status &&
  323. (APC.ModeFeedback == 0 || APC.ModeFeedback == 6) &&//0=idle;6=full open
  324. SensorVG11Status.Value && !AlarmSignalVG11HighAlarm.Value)
  325. {
  326. if (!_vac2Timer.IsRunning)
  327. _vac2Timer.Restart();
  328. if (_vac2Timer.ElapsedMilliseconds > _vac2PumpTimeS * 1000)
  329. _vac2 = true;
  330. }
  331. else
  332. {
  333. if (_vac2Timer.IsRunning)
  334. _vac2Timer.Stop();
  335. }
  336. }
  337. private void MonitorVAC3()
  338. {
  339. if (_vac3Timer == null)
  340. _vac3Timer = new Stopwatch();
  341. if (ValveAV16.Status || ValveAV20.Status)
  342. {
  343. _vac3 = false;
  344. if (_vac3Timer.IsRunning)
  345. _vac3Timer.Stop();
  346. }
  347. if (!ValveAV9.Status &&
  348. !ValveAV16.Status &&
  349. !ValveAV20.Status &&
  350. !ValveAV24.Status &&
  351. ValveAV18.Status &&
  352. ValveAV22.Status &&
  353. ValveAV38.Status &&
  354. ValveAV39.Status &&
  355. ValveAV82.Status &&
  356. ValveAV71.Status &&
  357. (APC.ModeFeedback == 0 || APC.ModeFeedback == 6) &&//0=idle;6=full open
  358. SensorVG11Status.Value && !AlarmSignalVG11HighAlarm.Value)
  359. {
  360. if (!_vac3Timer.IsRunning)
  361. _vac3Timer.Restart();
  362. if (_vac3Timer.ElapsedMilliseconds > _vac3PumpTimeS * 1000)
  363. _vac3 = true;
  364. }
  365. else
  366. {
  367. if (_vac3Timer.IsRunning)
  368. _vac3Timer.Stop();
  369. }
  370. }
  371. }
  372. }