| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026 | using System;using System.Collections.Generic;using System.Diagnostics;using System.Globalization;using System.Linq;using System.Text;using System.Threading;namespace MECF.Framework.RT.Core.ThreadLock{    #region 多线程同步协调类    /// <summary>    /// 线程的协调逻辑状态    /// </summary>    internal enum CoordinationStatus    {        /// <summary>        /// 所有项完成        /// </summary>        AllDone,        /// <summary>        /// 超时        /// </summary>        Timeout,        /// <summary>        /// 任务取消        /// </summary>        Cancel    }    /// <summary>    /// 一个线程协调逻辑类,详细参考书籍《CLR Via C#》page:681    /// 这个类可惜没有报告进度的功能    /// </summary>    internal sealed class AsyncCoordinator    {        private int m_opCount = 1;        private int m_statusReported = 0;        private Action<CoordinationStatus> m_callback;        private System.Threading.Timer m_timer;        /// <summary>        /// 每次的操作任务开始前必须调用该方法        /// </summary>        /// <param name="opsToAdd"></param>        public void AboutToBegin(int opsToAdd = 1) => Interlocked.Add(ref m_opCount, opsToAdd);        /// <summary>        /// 在一次任务处理好操作之后,必须调用该方法        /// </summary>        public void JustEnded()        {            if (Interlocked.Decrement(ref m_opCount) == 0)            {                ReportStatus(CoordinationStatus.AllDone);            }        }        /// <summary>        /// 该方法必须在发起所有的操作之后调用        /// </summary>        /// <param name="callback">回调方法</param>        /// <param name="timeout">超时时间</param>        public void AllBegun(Action<CoordinationStatus> callback, int timeout = Timeout.Infinite)        {            m_callback = callback;            if (timeout != Timeout.Infinite)            {                m_timer = new System.Threading.Timer(TimeExpired, null, timeout, Timeout.Infinite);            }            JustEnded();//修正一开始设置的初始值        }        /// <summary>        /// 超时的方法        /// </summary>        /// <param name="o"></param>        private void TimeExpired(object o) => ReportStatus(CoordinationStatus.Timeout);        /// <summary>        /// 取消任务的执行        /// </summary>        public void Cancel() => ReportStatus(CoordinationStatus.Cancel);        /// <summary>        /// 生成一次报告        /// </summary>        /// <param name="status">报告的状态</param>        private void ReportStatus(CoordinationStatus status)        {            //只报告一次的限制            if (Interlocked.Exchange(ref m_statusReported, 1) == 0)            {                m_callback(status);            }        }        /// <summary>        /// 乐观的并发方法模型,具体参照《CLR Via C#》page:686        /// </summary>        /// <param name="target">唯一的目标数据</param>        /// <param name="change">修改数据的算法</param>        /// <returns></returns>        public static int Maxinum(ref int target, Func<int, int> change)        {            int currentVal = target, startVal, desiredVal;            do            {                startVal = currentVal;//设置值                //以下为业务逻辑,允许实现非常复杂的设置                desiredVal = change(startVal);                currentVal = Interlocked.CompareExchange(ref target, desiredVal, startVal);            }            while (startVal != currentVal);//更改失败就强制更新            return desiredVal;        }    }    #endregion    #region 乐观并发模型的协调类    /// <summary>    /// 一个用于高性能,乐观并发模型控制操作的类,允许一个方法(隔离方法)的安全单次执行    /// </summary>    public sealed class HslAsyncCoordinator    {        /// <summary>        /// 实例化一个对象,需要传入隔离执行的方法        /// </summary>        /// <param name="operater">隔离执行的方法</param>        public HslAsyncCoordinator(Action operater)        {            action = operater;        }        /// <summary>        /// 操作状态,0是未操作,1是操作中        /// </summary>        private int OperaterStatus = 0;        /// <summary>        /// 需要操作的次数        /// </summary>        private long Target = 0;        /// <summary>        /// 启动线程池执行隔离方法        /// </summary>        public void StartOperaterInfomation()        {            Interlocked.Increment(ref Target);            if (Interlocked.CompareExchange(ref OperaterStatus, 1, 0) == 0)            {                //启动保存                ThreadPool.QueueUserWorkItem(new WaitCallback(ThreadPoolOperater), null);            }        }        private Action action = null;        private void ThreadPoolOperater(object obj)        {            long currentVal = Target, startVal;            long desiredVal = 0;            do            {                startVal = currentVal;//设置值                // 以下为业务逻辑,允许实现非常复杂的设置                action?.Invoke();                // 需要清零值的时候必须用下面的原子操作                currentVal = Interlocked.CompareExchange(ref Target, desiredVal, startVal);            }            while (startVal != currentVal);// 更改失败就强制更新            // 退出保存状态            Interlocked.Exchange(ref OperaterStatus, 0);            // 最终状态确认            if (Target != desiredVal) StartOperaterInfomation();        }    }    #endregion    #region 高性能的读写锁    // 一个高性能的读写锁,由《CLR Via C#》作者Jeffrey Richter提供    /// <summary>    /// 一个高性能的读写锁,支持写锁定,读灵活,读时写锁定,写时读锁定    /// </summary>    public sealed class HslReadWriteLock : IDisposable    {        #region Lock State Management#if false              private struct BitField {                 private int m_mask, m_1, m_startBit;                 public BitField(int startBit, int numBits) {                    m_startBit = startBit;                    m_mask = unchecked((int)((1 << numBits) - 1) << startBit);                    m_1 = unchecked((int)1 << startBit);                 }                 public void Increment(ref int value) { value += m_1; }                 public void Decrement(ref int value) { value -= m_1; }                 public void Decrement(ref int value, int amount) { value -= m_1 * amount; }                 public int Get(int value) { return (value & m_mask) >> m_startBit; }                 public int Set(int value, int fieldValue) { return (value & ~m_mask) | (fieldValue << m_startBit); }              }              private static BitField s_state = new BitField(0, 3);              private static BitField s_readersReading = new BitField(3, 9);              private static BitField s_readersWaiting = new BitField(12, 9);              private static BitField s_writersWaiting = new BitField(21, 9);              private static OneManyLockStates State(int value) { return (OneManyLockStates)s_state.Get(value); }              private static void State(ref int ls, OneManyLockStates newState) {                 ls = s_state.Set(ls, (int)newState);              }#endif        private enum OneManyLockStates        {            Free = 0x00000000,            OwnedByWriter = 0x00000001,            OwnedByReaders = 0x00000002,            OwnedByReadersAndWriterPending = 0x00000003,            ReservedForWriter = 0x00000004,        }        private const int c_lsStateStartBit = 0;        private const int c_lsReadersReadingStartBit = 3;        private const int c_lsReadersWaitingStartBit = 12;        private const int c_lsWritersWaitingStartBit = 21;        // Mask = unchecked((int) ((1 << numBits) - 1) << startBit);        private const int c_lsStateMask = unchecked((int)((1 << 3) - 1) << c_lsStateStartBit);        private const int c_lsReadersReadingMask = unchecked((int)((1 << 9) - 1) << c_lsReadersReadingStartBit);        private const int c_lsReadersWaitingMask = unchecked((int)((1 << 9) - 1) << c_lsReadersWaitingStartBit);        private const int c_lsWritersWaitingMask = unchecked((int)((1 << 9) - 1) << c_lsWritersWaitingStartBit);        private const int c_lsAnyWaitingMask = c_lsReadersWaitingMask | c_lsWritersWaitingMask;        // FirstBit = unchecked((int) 1 << startBit);        private const int c_ls1ReaderReading = unchecked((int)1 << c_lsReadersReadingStartBit);        private const int c_ls1ReaderWaiting = unchecked((int)1 << c_lsReadersWaitingStartBit);        private const int c_ls1WriterWaiting = unchecked((int)1 << c_lsWritersWaitingStartBit);        private static OneManyLockStates State(int ls) { return (OneManyLockStates)(ls & c_lsStateMask); }        private static void SetState(ref int ls, OneManyLockStates newState)        {            ls = (ls & ~c_lsStateMask) | ((int)newState);        }        private static int NumReadersReading(int ls) { return (ls & c_lsReadersReadingMask) >> c_lsReadersReadingStartBit; }        private static void AddReadersReading(ref int ls, int amount) { ls += (c_ls1ReaderReading * amount); }        private static int NumReadersWaiting(int ls) { return (ls & c_lsReadersWaitingMask) >> c_lsReadersWaitingStartBit; }        private static void AddReadersWaiting(ref int ls, int amount) { ls += (c_ls1ReaderWaiting * amount); }        private static int NumWritersWaiting(int ls) { return (ls & c_lsWritersWaitingMask) >> c_lsWritersWaitingStartBit; }        private static void AddWritersWaiting(ref int ls, int amount) { ls += (c_ls1WriterWaiting * amount); }        private static bool AnyWaiters( int ls ) { return (ls & c_lsAnyWaitingMask) != 0; }        private static string DebugState(int ls)        {            return string.Format(CultureInfo.InvariantCulture,               "State={0}, RR={1}, RW={2}, WW={3}", State(ls),               NumReadersReading(ls), NumReadersWaiting(ls), NumWritersWaiting(ls));        }        /// <summary>        /// 返回本对象的描述字符串        /// </summary>        /// <returns>对象的描述字符串</returns>        public override string ToString() { return DebugState(m_LockState); }        #endregion        #region State Fields        private int m_LockState = (int)OneManyLockStates.Free;        // Readers wait on this if a writer owns the lock        private Semaphore m_ReadersLock = new Semaphore(0, int.MaxValue);        // Writers wait on this if a reader owns the lock        private Semaphore m_WritersLock = new Semaphore(0, int.MaxValue);        #endregion        #region Construction        /// <summary>        /// 实例化一个读写锁的对象        /// </summary>        public HslReadWriteLock() : base() { }        #endregion        #region IDisposable Support        private bool disposedValue = false; // 要检测冗余调用        void Dispose(bool disposing)        {            if (!disposedValue)            {                if (disposing)                {                    // TODO: 释放托管状态(托管对象)。                }                // TODO: 释放未托管的资源(未托管的对象)并在以下内容中替代终结器。                // TODO: 将大型字段设置为 null。                m_WritersLock.Close(); m_WritersLock = null;                m_ReadersLock.Close(); m_ReadersLock = null;                disposedValue = true;            }        }        // TODO: 仅当以上 Dispose(bool disposing) 拥有用于释放未托管资源的代码时才替代终结器。        // ~HslReadWriteLock() {        //   // 请勿更改此代码。将清理代码放入以上 Dispose(bool disposing) 中。        //   Dispose(false);        // }        // 添加此代码以正确实现可处置模式。        /// <summary>        /// 释放资源        /// </summary>        public void Dispose()        {            // 请勿更改此代码。将清理代码放入以上 Dispose(bool disposing) 中。            Dispose(true);            // TODO: 如果在以上内容中替代了终结器,则取消注释以下行。            // GC.SuppressFinalize(this);        }        #endregion        #region Writer members        private bool m_exclusive;        /// <summary>        /// 根据读写情况请求锁        /// </summary>        /// <param name="exclusive">True为写请求,False为读请求</param>        public void Enter(bool exclusive)        {            if (exclusive)            {                while (WaitToWrite(ref m_LockState)) m_WritersLock.WaitOne();            }            else            {                while (WaitToRead(ref m_LockState)) m_ReadersLock.WaitOne();            }            m_exclusive = exclusive;        }        private static bool WaitToWrite(ref int target)        {            int start, current = target;            bool wait;            do            {                start = current;                int desired = start;                wait = false;                switch (State(desired))                {                    case OneManyLockStates.Free:  // If Free -> OBW, return                    case OneManyLockStates.ReservedForWriter: // If RFW -> OBW, return                        SetState(ref desired, OneManyLockStates.OwnedByWriter);                        break;                    case OneManyLockStates.OwnedByWriter:  // If OBW -> WW++, wait & loop around                        AddWritersWaiting(ref desired, 1);                        wait = true;                        break;                    case OneManyLockStates.OwnedByReaders: // If OBR or OBRAWP -> OBRAWP, WW++, wait, loop around                    case OneManyLockStates.OwnedByReadersAndWriterPending:                        SetState(ref desired, OneManyLockStates.OwnedByReadersAndWriterPending);                        AddWritersWaiting(ref desired, 1);                        wait = true;                        break;                    default:                        Debug.Assert(false, "Invalid Lock state");                        break;                }                current = Interlocked.CompareExchange(ref target, desired, start);            } while (start != current);            return wait;        }        /// <summary>        /// 释放锁,将根据锁状态自动区分读写锁        /// </summary>        public void Leave()        {            int wakeup;            if (m_exclusive)            {                Debug.Assert((State(m_LockState) == OneManyLockStates.OwnedByWriter) && (NumReadersReading(m_LockState) == 0));                // Pre-condition:  Lock's state must be OBW (not Free/OBR/OBRAWP/RFW)                // Post-condition: Lock's state must become Free or RFW (the lock is never passed)                // Phase 1: Release the lock                wakeup = DoneWriting(ref m_LockState);            }            else            {                var s = State(m_LockState);                Debug.Assert((State(m_LockState) == OneManyLockStates.OwnedByReaders) || (State(m_LockState) == OneManyLockStates.OwnedByReadersAndWriterPending));                // Pre-condition:  Lock's state must be OBR/OBRAWP (not Free/OBW/RFW)                // Post-condition: Lock's state must become unchanged, Free or RFW (the lock is never passed)                // Phase 1: Release the lock                wakeup = DoneReading(ref m_LockState);            }            // Phase 2: Possibly wake waiters            if (wakeup == -1) m_WritersLock.Release();            else if (wakeup > 0) m_ReadersLock.Release(wakeup);        }        // Returns -1 to wake a writer, +# to wake # readers, or 0 to wake no one        private static int DoneWriting(ref int target)        {            int start, current = target;            int wakeup = 0;            do            {                int desired = (start = current);                // We do this test first because it is commonly true &                 // we avoid the other tests improving performance                if (!AnyWaiters(desired))                {                    SetState(ref desired, OneManyLockStates.Free);                    wakeup = 0;                }                else if (NumWritersWaiting(desired) > 0)                {                    SetState(ref desired, OneManyLockStates.ReservedForWriter);                    AddWritersWaiting(ref desired, -1);                    wakeup = -1;                }                else                {                    wakeup = NumReadersWaiting(desired);                    Debug.Assert(wakeup > 0);                    SetState(ref desired, OneManyLockStates.OwnedByReaders);                    AddReadersWaiting(ref desired, -wakeup);                    // RW=0, RR=0 (incremented as readers enter)                }                current = Interlocked.CompareExchange(ref target, desired, start);            } while (start != current);            return wakeup;        }        #endregion        #region Reader members        private static bool WaitToRead(ref int target)        {            int start, current = target;            bool wait;            do            {                int desired = (start = current);                wait = false;                switch (State(desired))                {                    case OneManyLockStates.Free:  // If Free->OBR, RR=1, return                        SetState(ref desired, OneManyLockStates.OwnedByReaders);                        AddReadersReading(ref desired, 1);                        break;                    case OneManyLockStates.OwnedByReaders: // If OBR -> RR++, return                        AddReadersReading(ref desired, 1);                        break;                    case OneManyLockStates.OwnedByWriter:  // If OBW/OBRAWP/RFW -> RW++, wait, loop around                    case OneManyLockStates.OwnedByReadersAndWriterPending:                    case OneManyLockStates.ReservedForWriter:                        AddReadersWaiting(ref desired, 1);                        wait = true;                        break;                    default:                        Debug.Assert(false, "Invalid Lock state");                        break;                }                current = Interlocked.CompareExchange(ref target, desired, start);            } while (start != current);            return wait;        }        // Returns -1 to wake a writer, +# to wake # readers, or 0 to wake no one        private static int DoneReading(ref int target)        {            int start, current = target;            int wakeup;            do            {                int desired = (start = current);                AddReadersReading(ref desired, -1);  // RR--                if (NumReadersReading(desired) > 0)                {                    // RR>0, no state change & no threads to wake                    wakeup = 0;                }                else if (!AnyWaiters(desired))                {                    SetState(ref desired, OneManyLockStates.Free);                    wakeup = 0;                }                else                {                    Debug.Assert(NumWritersWaiting(desired) > 0);                    SetState(ref desired, OneManyLockStates.ReservedForWriter);                    AddWritersWaiting(ref desired, -1);                    wakeup = -1;   // Wake 1 writer                }                current = Interlocked.CompareExchange(ref target, desired, start);            } while (start != current);            return wakeup;        }        #endregion    }    #endregion    #region 简单的混合锁    /// <summary>    /// 一个简单的混合线程同步锁,采用了基元用户加基元内核同步构造实现    /// </summary>    /// <example>    /// 以下演示常用的锁的使用方式,还包含了如何优雅的处理异常锁    /// <code lang="cs" source="HslCommunication_Net45.Test\Documentation\Samples\Core\ThreadLock.cs" region="SimpleHybirdLockExample1" title="SimpleHybirdLock示例" />    /// </example>    public sealed class SimpleHybirdLock : IDisposable    {        #region IDisposable Support        private bool disposedValue = false; // 要检测冗余调用        void Dispose(bool disposing)        {            if (!disposedValue)            {                if (disposing)                {                    // TODO: 释放托管状态(托管对象)。                }                // TODO: 释放未托管的资源(未托管的对象)并在以下内容中替代终结器。                // TODO: 将大型字段设置为 null。                m_waiterLock.Close();                disposedValue = true;            }        }        // TODO: 仅当以上 Dispose(bool disposing) 拥有用于释放未托管资源的代码时才替代终结器。        // ~SimpleHybirdLock() {        //   // 请勿更改此代码。将清理代码放入以上 Dispose(bool disposing) 中。        //   Dispose(false);        // }        // 添加此代码以正确实现可处置模式。        /// <summary>        /// 释放资源        /// </summary>        public void Dispose()        {            // 请勿更改此代码。将清理代码放入以上 Dispose(bool disposing) 中。            Dispose(true);            // TODO: 如果在以上内容中替代了终结器,则取消注释以下行。            // GC.SuppressFinalize(this);        }        #endregion        /// <summary>        /// 基元用户模式构造同步锁        /// </summary>        private int m_waiters = 0;        /// <summary>        /// 基元内核模式构造同步锁        /// </summary>        private AutoResetEvent m_waiterLock = new AutoResetEvent(false);        /// <summary>        /// 获取锁        /// </summary>        public void Enter()        {            if (Interlocked.Increment(ref m_waiters) == 1) return;//用户锁可以使用的时候,直接返回,第一次调用时发生            //当发生锁竞争时,使用内核同步构造锁            m_waiterLock.WaitOne();        }        /// <summary>        /// 离开锁        /// </summary>        public void Leave()        {            if (Interlocked.Decrement(ref m_waiters) == 0) return;//没有可用的锁的时候            m_waiterLock.Set();        }        /// <summary>        /// 获取当前锁是否在等待当中        /// </summary>        public bool IsWaitting => m_waiters != 0;    }    #endregion    #region 多线程并发处理数据的类        /*******************************************************************************     *      *    创建日期:2017年7月6日 08:30:56     *         *      *******************************************************************************/         /// <summary>    /// 一个用于多线程并发处理数据的模型类,适用于处理数据量非常庞大的情况    /// </summary>    /// <typeparam name="T">等待处理的数据类型</typeparam>    public sealed class SoftMultiTask<T>    {        /// <summary>        /// 实例化一个数据处理对象        /// </summary>        /// <param name="dataList">数据处理列表</param>        /// <param name="operater">数据操作方法,应该是相对耗时的任务</param>        /// <param name="threadCount">需要使用的线程数</param>        public SoftMultiTask(T[] dataList, Func<T, bool> operater, int threadCount = 10)        {            m_dataList = dataList ?? throw new ArgumentNullException("dataList");            m_operater = operater ?? throw new ArgumentNullException("operater");            if (threadCount < 1) throw new ArgumentException( "threadCount can not less than 1", "threadCount");            m_threadCount = threadCount;            //增加任务处理            Interlocked.Add(ref m_opCount, dataList.Length);            //增加线程处理            Interlocked.Add(ref m_opThreadCount, threadCount);        }        /// <summary>        /// 操作总数,判定操作是否完成        /// </summary>        private int m_opCount = 0;        /// <summary>        /// 判断是否所有的线程是否处理完成        /// </summary>        private int m_opThreadCount = 1;        /// <summary>        /// 准备启动的处理数据的线程数量        /// </summary>        private int m_threadCount = 10;        /// <summary>        /// 指示多线程处理是否在运行中,防止冗余调用        /// </summary>        private int m_runStatus = 0;        /// <summary>        /// 列表数据        /// </summary>        private T[] m_dataList = null;        /// <summary>        /// 需要操作的方法        /// </summary>        private Func<T, bool> m_operater = null;        /// <summary>        /// 一个双参数委托        /// </summary>        /// <param name="item"></param>        /// <param name="ex"></param>        public delegate void MultiInfo(T item, Exception ex);        /// <summary>        /// 用于报告进度的委托,当finish等于count时,任务完成        /// </summary>        /// <param name="finish">已完成操作数量</param>        /// <param name="count">总数量</param>        /// <param name="success">成功数量</param>        /// <param name="failed">失败数量</param>        public delegate void MultiInfoTwo(int finish, int count, int success, int failed);        /// <summary>        /// 异常发生时事件        /// </summary>        public event MultiInfo OnExceptionOccur;        /// <summary>        /// 报告处理进度时发生        /// </summary>        public event MultiInfoTwo OnReportProgress;        /// <summary>        /// 已处理完成数量,无论是否异常        /// </summary>        private int m_finishCount = 0;        /// <summary>        /// 处理完成并实现操作数量        /// </summary>        private int m_successCount = 0;        /// <summary>        /// 处理过程中异常数量        /// </summary>        private int m_failedCount = 0;        /// <summary>        /// 用于触发事件的混合线程锁        /// </summary>        private SimpleHybirdLock HybirdLock = new SimpleHybirdLock();        /// <summary>        /// 指示处理状态是否为暂停状态        /// </summary>        private bool m_isRunningStop = false;        /// <summary>        /// 指示系统是否需要强制退出        /// </summary>        private bool m_isQuit = false;        /// <summary>        /// 在发生错误的时候是否强制退出后续的操作        /// </summary>        private bool m_isQuitAfterException = false;        #region Start Stop Method        /// <summary>        /// 启动多线程进行数据处理        /// </summary>        public void StartOperater()        {            if (Interlocked.CompareExchange(ref m_runStatus, 0, 1) == 0)            {                for (int i = 0; i < m_threadCount; i++)                {                    Thread thread = new Thread(new ThreadStart(ThreadBackground));                    thread.IsBackground = true;                    thread.Start();                }                JustEnded();            }        }        /// <summary>        /// 暂停当前的操作        /// </summary>        public void StopOperater()        {            if (m_runStatus == 1)            {                m_isRunningStop = true;            }        }        /// <summary>        /// 恢复暂停的操作        /// </summary>        public void ResumeOperater()        {            m_isRunningStop = false;        }        /// <summary>        /// 直接手动强制结束操作        /// </summary>        public void EndedOperater()        {            if (m_runStatus == 1)            {                m_isQuit = true;            }        }        /// <summary>        /// 在发生错误的时候是否强制退出后续的操作        /// </summary>        public bool IsQuitAfterException        {            get            {                return m_isQuitAfterException;            }            set            {                m_isQuitAfterException = value;            }        }        #endregion        private void ThreadBackground()        {            while (true)            {                // 检测是否处于暂停的状态                while (m_isRunningStop)                {                    ;                }                // 提取处理的任务                int index = Interlocked.Decrement(ref m_opCount);                if (index < 0)                {                    // 任务完成                    break;                }                else                {                    T item = m_dataList[index];                    bool result = false;                    bool isException = false;                    try                    {                        if (!m_isQuit) result = m_operater(item);                    }                    catch (Exception ex)                    {                        isException = true;                        // 此处必须吞噬所有异常                        OnExceptionOccur?.Invoke(item, ex);                        // 是否需要退出处理                        if (m_isQuitAfterException) EndedOperater();                    }                    finally                    {                        // 保证了报告进度时数据的正确性                        HybirdLock.Enter();                        if (result) m_successCount++;                        if (isException) m_failedCount++;                        m_finishCount++;                        OnReportProgress?.Invoke(m_finishCount, m_dataList.Length, m_successCount, m_failedCount);                        HybirdLock.Leave();                    }                }            }            JustEnded();        }        private void JustEnded()        {            if (Interlocked.Decrement(ref m_opThreadCount) == 0)            {                // 数据初始化                m_finishCount = 0;                m_failedCount = 0;                m_successCount = 0;                Interlocked.Exchange(ref m_opCount, m_dataList.Length);                Interlocked.Exchange(ref m_opThreadCount, m_threadCount + 1);                // 状态复位                Interlocked.Exchange(ref m_runStatus, 0);                m_isRunningStop = false;                m_isQuit = false;            }        }    }    #endregion    #region 双检锁#if !NET35    /// <summary>    /// 一个双检锁的示例,适合一些占内存的静态数据对象,获取的时候才实例化真正的对象    /// </summary>    internal sealed class Singleton    {        private static object m_lock = new object();        private static Singleton SValue = null;        public Singleton()        {        }        public static Singleton GetSingleton()        {            if (SValue != null) return SValue;            Monitor.Enter(m_lock);            if (SValue == null)            {                Singleton temp = new Singleton();                Volatile.Write(ref SValue, temp);                //上述编译不通过,简单的使用下述过程                SValue = new Singleton();            }            Monitor.Exit(m_lock);            return SValue;        }    }#endif    #endregion    #region 高级混合锁#if !NET35    /// <summary>    /// 一个高级的混合线程同步锁,采用了基元用户加基元内核同步构造实现,并包含了自旋和线程所有权    /// </summary>    internal sealed class AdvancedHybirdLock : IDisposable    {        #region IDisposable Support        private bool disposedValue = false; // 要检测冗余调用        void Dispose( bool disposing )        {            if (!disposedValue)            {                if (disposing)                {                    // TODO: 释放托管状态(托管对象)。                }                // TODO: 释放未托管的资源(未托管的对象)并在以下内容中替代终结器。                // TODO: 将大型字段设置为 null。                m_waiterLock.Close( );                disposedValue = true;            }        }        // TODO: 仅当以上 Dispose(bool disposing) 拥有用于释放未托管资源的代码时才替代终结器。        // ~SimpleHybirdLock() {        //   // 请勿更改此代码。将清理代码放入以上 Dispose(bool disposing) 中。        //   Dispose(false);        // }        // 添加此代码以正确实现可处置模式。        /// <summary>        /// 释放资源        /// </summary>        public void Dispose( )        {            // 请勿更改此代码。将清理代码放入以上 Dispose(bool disposing) 中。            Dispose( true );            // TODO: 如果在以上内容中替代了终结器,则取消注释以下行。            // GC.SuppressFinalize(this);        }        #endregion        /// <summary>        /// 基元用户模式构造同步锁        /// </summary>        private int m_waiters = 0;        /// <summary>        /// 基元内核模式构造同步锁        /// </summary>        private AutoResetEvent m_waiterLock = new AutoResetEvent( false );        /// <summary>        /// 控制自旋的一个字段        /// </summary>        //private int m_spincount = 4000;        /// <summary>        /// 指出哪个线程拥有锁        /// </summary>        private int m_owningThreadId = 0;        /// <summary>        /// 指示锁拥有了多少次        /// </summary>        private int m_recursion = 0;        /// <summary>        /// 获取锁        /// </summary>        public void Enter( )        {            int threadId = Thread.CurrentThread.ManagedThreadId;            if (threadId == m_owningThreadId)            {                m_recursion++;                return;//如果调用线程已经拥有锁,就返回            }            //SpinWait spinwait            if (Interlocked.Increment( ref m_waiters ) == 1) return;//用户锁可以使用的时候,直接返回,第一次调用时发生            //当发生锁竞争时,使用内核同步构造锁            m_waiterLock.WaitOne( );        }        /// <summary>        /// 离开锁        /// </summary>        public void Leave( )        {            if (Interlocked.Decrement( ref m_waiters ) == 0) return;//没有可用的锁的时候            m_waiterLock.Set( );        }    }#endif    #endregion}
 |